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1. INTRODUCTION

The well known theorem of Borsuk Bo is the following.

Theorem 1.1 {Borsuk)

For every continuous mapping f:S" — K", there is a
point r - 5% such that f(z) = f(—r). In particular. if [ is antipodal {i.e.
flz)=~=f(-1) for all £« §%) then there is a point of S™ which maps into the
origin.

This theorem and its many generalizations have numerous
applications in various branches of mathematies, including Topology, Functional
Analysis, Measure Theory, Differential Equations. Approximation Theory.
Geometry, Convexity and Combinatorics. An extensive list of these applications.
some of which are about fifty vears old, appears in Ste.

Most combinaterial applications of Borsuk’s Theorem were
found during the last ten years. The best known of these is undoubtfully
Lovédsz's ingenious proaf of the Kneser coujecture. Kneser Kn o conjectured in
1955 that if » 2> 2r—f—1 and all the r-subsets of an n-clement set are colored
by t colors then there are two disjoint r-sets having the same color. This was
proved by Lovisz twenty vears later in Lo . shortly aflterwards, Biarany Ba
gave a charming short proof. Both preofs apply Borsuk’s theorem. In B3,
Bajméczy and Birany deduce an interesting generalization of Radon’s Theorem
from Theorem 1.1. Raden’s Theorem states that for any linear map [ from the

"to the n dimensional Euelidean space 27 there

(n=1)-dimensional simplex 3" °
are two disjoint faces of 3" 7' whose images intersect. The authors of BB ob-
served thal this statement, for every conlinuous map [. follows casily from
Barsuk's Theorem. A more general statement was proved by Barany, Shlosman

and Szues in B=5 . They showed that for every prime p and every n. if

No=(p=ljln=1) and f:aY — R™ i a continuous map. then there exist p pair-
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wise disjoint faces of A™ | such that the intersection of all their images is nonemp-
ty. This generalizes (for prime p) a theorem of Tverberg Tv|. who proved the
above for every linear map [, but without the assumption that p is a prime.

In order to establish their theorem, the authors of BSS|
proved the following interesting generalization of Borsuk's Theorem. For a prime
k and for m = 1. let X = X, denote the CW-complex consisting of & disjoint
copies of the m(k—1) dimensional ball with an identified boundary S$™* -1
Define a free action of the cyclic group Z, on X by defining w. the action of its
generator as follows, (see Bou, Chapter 13, for the definition of a (ree group ac-

“1)-1

tion on a topological space). Represent §™* as the set of all m by k real
k

matrices (a,,) satisfying 23, a, =0Toralll <1 <mand §7 a,? = 1. Define now
1= 1)
wia,, =(a, ,_;), where j+l1 is reduced modulo k. Thus w just cyclically shifts

gm0l Trivially, this action

the columns of a matrix representing a point of
is free. i.e., w(r)=1r for all ¢ §™*-L-1 " The map w is extended from
gmiE=l=t 4o X, as follows. Let (y.r.q) denote a point of X [rom the g-th ball

with radius r and $™* Y"1 _ coordinate y. Then w(y.r,q) = (wy,r.q+1), where
g+ is reduced modulo k. Since & is a prime, w defines a free Z, action on

T =,

Theorem 1.2 ( BSS)).

For any continuous map h:X — R™ there exists an z ¢ X,
such that A(z) = h(wz) = - - =h(w* ')

In Sections 3 and 4, we discuss some recent cornbinatorial
applications of this theorem.

Another interesting application of Borsuk's Theorem was
given by Barany and Lovasz in BL]. They proved that the number of vertices of
any centrally symmetric simple polytope in R™ is at least 2" (which is the
number of vertices of the n-cube). Very recently, R. Stanley Sta proved a more
general result using other algebraic methods.

There are several other cominatorial applications of
Theoremn 1.1, including an interesting result of Yao and Yao YY' in computation-
al geometry. Some of these an be found in Bjl. In the next three sections we dis-
cuss three additional, more recent examples. The first, proved in Section 2, is the
following simple result of Akiyama and the present author. The case d=2 of this
result is a well known Putman Problem (see, e.g. [La’).

Theorem 1.3 ((AA)
Let A Ag, ... .4y be d pairwise disjoint subsets of Rd.

d
each containing precisely n points, and suppose that the points in A = b]A, are
s

in general position. (i.e.. no hyperplane contains d+1 of the points). Then there
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is a partition of A into n pairwise disjoint sets S, . . ., S,, cach containing pre-
cisely  one point from each A,, such that the n simplices conv
{ e conv (5,) are pairwise disjoint.

Our sccond example, discussed in Seetion 3. is the follow-

e
mne.

Theorem 1.4 (|AL').

Let N be an opened vecklace with ka, beads of color 1,
I <1< (. Then it is possible to cut N in (k—1)! places and partition the
resulting intervals into k£ collections. each containing precisely a, beads of color 1,
b < Sl

This theorem is best possible, and solves a problem of
Goldberg and West GW! (see also AW ). who proved it for £=2. Its continuous
analogue generalizes a theorem of Hobby and Rice HR on L -approximation.

In Section 4 we deseribe. very briefly, the proof of the fol-
lowing result, due to Frankl, Lovdsz and the present author. see AFL .

Theorem 1.5 (The general Kneser problem)

If n > (t—1)(k—1)+k'r and all the r-subsets of an n-
elernent set are colored by ¢ colors then there are & pairwise disjoint r-sets having
the same color,

This result is best possible and establishes a conjecture of
Erdds b, (see also Gy|). For k=2 the statement of the theorem is Kneser con-
jecture mentioned above which was proved by Lovdsz. The case r=2 was proved
by Cockayne and Lorimer [CL and, independently. by Gyarfas Gy . The case
{ =2 was proved by Frankl and the present author in AF .

Finally, in Section 3, we mention a few open problems.
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2. DISJOINT SINIPLICES

As observed by Ulam, Borsuk's Theorem implies the fol-
lowing result, known under the sell-explanatory name “the ham sandwich
theorem.”

Theorem 2.1

Let gy jtar o jry be d probability measures on i#¥. each
absolutely continuous with respect to the usual Lebesgue measure. Then there
exists a hyperplane H in R®, which bisects all ¢ mecasures, ie.
CAHT)=u(lT)="aTor all 1 <i < d, where i~ and H~ denote. respectively.
the open positive side and the negative side of H.

Theorem 2.1 is usually deduced (rom Borsuk's Theorem as
follows. One first shows, using measure-theoretic arguments. that for each unit

.d -
vector u ~ 5° there is a hyperplane [ =fi{u), perpendicular to u, with u

oricnted from H# o H 7. which depends continuously en u and bisects ji . i.e.
co(H U= p4(H7. Next one defines a continuous function f:5¢ — R by
i) = (gl e R vaiss jig_(H(v))). Since H7(v)=H (—v) the assertion of
Theorem 2.1 now follows from that of Theorem 1.1.

We next apply the last theorem to prove the following.

Lemma 2.2
. .44 be as in Theorem 1.3. Then there

(2.1) [H-Nal=naf2ad | NA,| ="n/f2foralll < i < d

(Notice that if n is odd (2.1) implies that ¥ contains precisely one point from

each A,.)

Proof.

Replace each point peA by a ball of radius « centered in p
where - is small enough to guarantee that no hyperplane intersects more than d
halls. Associate each ball with a uniformly distributed measure af 1'n. Eor
1 <1 < d and a (lebesgue)- measurable subset T of B¢ define 4,{ T) as the total
measure of balls centered at points of A, captured by T. Clearly ji yig..../04 are
continuous probability measure. By Theorem 2.1 there exists a hyperplane H in
RY such that p (H"! =p(H ) =t2forall 1 <i<d. Unis odd. this implies
that K intersects at least one ball centered at a point of A,. However, i cannot
intersect more than d balls altogether. and thus it intersects precisely one ball
centered at a point of :A,, and it must bisect these d balls. Hence. for odd n. H
satisfies (2.1). [f n is even. /f intersects at most d balls, and by slightly rotating
H we ean divide the centers of these balls between H and H as we wish.

without changing the

qosition of each other point of U with respeer Lo H. One
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can easily cheek that this guarantees the existence of an # satisfving (2.1). O

We can now prove | heoremi 1.3 by induction of n. For

n =1 the result is trivial. Assnming the result for 4l
'’ somder Ay As Ay be oas in Theorews 1.3 and lec /f be a hyperplane.
guaranteed by Lemma oG B satisfving (=00 Pt
B, =H NA and €, =H N4, for
P Sd8=0 By and € = €l 2 LG By the induction
hypothesis, applied to B.08,. .. .. fy and 1o C'.C), . .., Cy; we oblain two sets

S, and Sy of n/20 pairwise disjoint simplices each, where each simplex of 5, con-
tains preciselv one vertex from ecach #, and each simplex of S, contains precisely
one vertex from ecach C,. Clearly. all the simplices in §; lic in /™ and all those
in S, lie in H

We thus obtained 2- n /2 pairwise non-interseeting sim-
plices. These, together with the simplex spanned by A, N I il 2 is odd. complete

the induction and the proof of the theorem. O

£
®

Bk s I
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3. SPLITTING NECKLACES
Let N be a necklace opened at the clasp with kg, beads of

color 1, 1 <1 < t. A k-splitting of the necklace is a partition of .V into k parts.
cach consisting of a finite number of non-overlapping intervals of beads whose
union ecaptures precisely a, beads of color 1, | <1 <t. The size of the k-
splitting is the pumber of cuts that form the intervals of the splitting. Thus.
Theorem L4 simply asserts that every necklace with ka, beads of color 1.
L <1 < t, has a k-splitting of size at most (k—1}-t. One can easily check that
the number (k—1):t is best possible: indeed if the beads of each color appear con-
tignously on the opened necklace, then any k-splitting must contain at least k-1
euts hetween the beads of each color, and hence its size is at least (k—1)1.

To prove Theorem L4 we need to formulate a continuous
version of it

Let { = 0.1 be the unit interval. An tnterval (-coloring is
a coloring of the points of { by ¢ colors, such that for each /.1 <t < t. the set of
points colored 1 is (Lebesgue) measurable. Given such a coloring. a k-splitting of
size v is a sequence of numbers 0 =y <y, < 0 Ty Sy = and a parti-
tion of the family of r+1 intervals F =1 y,.y,.,: 0 <+ < r}into k pairwise dis-
joint subfamilies #,. . . .. Fp whose union is £, such that for each 1 < j <k the
union of the intervals in F, captures precisely | k of the total measure of each of
the ¢ colors. Clearly, if each color appears contiguously and colors ocenpy dis-
joint intervals. the size of cach k-splitting is at least tk—1)-t. Thereflore. the next

thearem is best possible.

Theorem 3.1

ivery interval {-roloring has a k-splitting of size (k—1)t

It is not dilficult to check that this theorem implies
Theorem L1 indeed, given an opened necklace of ke, =kn beads as in

il

Theorem 1.1, convert it into an interval coloring by partitioning {= 0.1 into k-n
segments and coloring the j-th segmient by the color of the j-th bead of the neck-
lace. By Theorem 3.1 there is a k-splitting with at mos! (k—1)-t cuts, but these
cuts need not occur at the endpoints of the k-n segments. One may now show.
by induction on the number of "bad" cuts, that this splitting ean be modified to
form a k-splitting of the same size with ne bad eurs. ... a spliting of the
discrete necklace. The details are left to the reader.

Theorem 3.1 clearly follows from the Tollowing two asser-

tions

Proposition 3.2

Theorem 3.1 holds for every prime k.

Borsuk-"
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Proposition 3.3
The validity of Theorem 3.1 for (¢.4) and for (t.1) implies
its validity for (t.k-{).
The [easy) prool of Proposition 3.3 is left to the reader. To prove Proposi-
tion 3.2 we need the following additional result from BssS.

Put N =(k=1) (in+1) and let A" denote the N-dimensional simplex. i.e.,

: - N
- 1 N ~ = . .
B G - V6 R S R d, Z0and 3 5o =1} The support of a point
> 1-0
Ly 05 s N 5 “ =
z:4" is the minimal face of 37 that contains r. Let ¥ = Yy, denote the fol-

lowing C'W-complex;

¥on = Wvide -« o ol oo = &°

and the supports of the y, —s are pairwise disjoint}

There is an obvious free Z; action on Yy ;; ils generator ¥
maps (¥, - - . Ypy into (yq, . . . PR

Let T and R be wwo topological spaces and suppose that
Z, acts freely on both., Let a and 3 denote the actions of the gencrator of 7, on
T and R, respectively. We say that a continuous mapping
[T—R is Z, —equivariant if [ oa = fof, (cf Bou. Chapter 13).

Recall that for r > 0, a topological space T is s-connecled
if for all 0 < € < &, every continuous mapping of the £ dimensional sphere 57 into
T can he extended to a continuous mapping of the £+1 dimensional ball pi-
with boundary $tinto T.

LLemma 3.4 Bss.

Suppose k is a prime. m 2 I.N = (k=1)(m +1) and let
N=X,V=Vyi.pand Y be as in the preceding paragraphs.  Then
Yois N=k =dimX =1 conpeeted and thus there s a Zp-equivariant map
[ X—V.

We can now prove Proposition 3.2, Let k& be a prime and
fet ¢ be an interval (-coloring. Put X =X, ;.. V' = V., and deline a con-
tinuous function ¢:¥ — R' ! as follows. Let y = (y,.ya. . . .. v ) be a point of
Y. Rerall that each y, is a point of 3V, ie. is an N =1 dimensional vector with

nonnegative coordinates whose sum is 1. and that the supports ol the y —< are

b AR 1
pairwise disjoint. Put r =(rg.x;..... Iy) = —Ljfyi Eiire F ot igg), catid
define a  partition  of 0.1 into  N+1 intervals  dpdyo . [v. where
gk )
lo= 0. [, = |} 5. 3 5, |. 1 €5 <N, Notice that since the supports of
0 -0

the y,—s arc pairwise disjoint, if £, -0 (i.c.. the interval /) has positive length),

then there is o urique £ 17 €7 & sueh b the jotii eoordinate of ¥y i~ positive.
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For 1 < ¢ <k, let F; be the family of all those [, =5 such that the j-th coordi-
nate of y, is positive. Notice that the sum of lengths of these [, —s is precisely
L/k. For } <@ - t=1 define g,(y) to be the measure of the t1h color in UF,.
Finally. put gly) = (g,(v)galy). . ... g (y)). One ecan easily check that
g: ¥V — R' Vs continuous. Moreover, for | <e€<Lkand ] 20 < U=1, g‘!’y’ Iy)
is the measure of the rth color in UFp. By Lemma 3.4 there exists a Z,-
equivariant map [:¥, o — Y, ¢ .. Define higof : X —R'"'. By Theorem 1.2

=hie® 'r). By the
cquivariance of f.y = f(r) satisfies gly) = qlyy) = - = gi5° 'y). But this
means that each ol the families of intervals F [ F,. . L .. Fi corresponding 1o y

there is some r - X such that A(r) =hiuwr) =

captures precisely 1/k of the measure of each of the first £ =1 colors. Since the
total measure of cach F, is 1/k. each F. captures precisely 1/k of the measure of
the last color. as well. Dividing the length 0 intervals arbitrarily between the
F,—s we conclude that there is a k-splitting of siee N = (k—=1)t. as desired.
This completes the prool of Proposition 3.2,

t'ombining the methods of this Section with a simple com-

pactness argument one ean prove the following generalization of Theorem 3.1

Theorem 3.5

Let j#y.fia. - - . .44 be ¢ continuous probability measires on
the unit interval. Then it is possible o eut the interval in {¥—1)¢ places and
partition the (k—1)'t+! resulting intervals into k families Bk g By suich
that 1, (UF,) = 1/k for all 1 v <t 1 < j < k. The number (A—1)¢ is best
possible.

The case k=2 of the last theorem is the Hobby-Rice

theorem HR) ou L, approximation.

Borsuk-Type

1.THE GENERAL KXESE
The

those used by Lovdsz in L

first uselul to reformulate
IKneser hypergraph. Let G
as follows. The vertices ol
tion of k vertices forms ar
Theorem 1.5 is thus equis
then €, ; . is not t-coloral

For
plicial complex. C{#) as I'
E-vuples ey tas - - - s ey ol
folie e dh Vel poof ©h
graph of fI on the (pairw

1]

vy =V, forall v ¢ fand 1 :

Theorem 1.5 now follows [

Proposition 1.1
For

C(H)is {t—1){k—1)—1 con

Proposition 1.2
cl(G
n 2 (t=1){k=1) +kr iri

Proposition 4.3

The
(r' = (t=1){k—1)+kr.t.k") "

Proj
probably holds for every g
Borsuk Theorem due to Ba
position 4.2 can be prove
(easy) proof of Propositic
appear in AFL.

Proj

1.5 for every prime k. Thu




such that the j-th ecoordi-
15 of these | —« is precisely
re of the tth color in UF,.
ne c¢an easily cheek that
and 1 <1 <t-l. gty 'v)
ima 3.4 there exists a Z,-
X—p'"!
=hie® 'r). By the
=g{y* 'y). But this

. .« . Fy corresponding 1o y

By Theorem 1.2

first £ =1 colors. =>ince the

«cisely 1/k of the measure of

cals arbitrarily between the

e N o= (k—1)t. as desired.

i Section with a simple com-

lization of Theorem 3.1.

ious probability measures on
erval in (k=1)t plaves and
umilies F . Fa. ... . F, such
Che number (k—1)t is best

heorem is the llobby-Rice

Borsuk-Type Theorems

THE GENERAL KNESER PROBLIEN,

The basie ideas in the proof of Theorem 1.5 are similar 1o
those used by Lovisz in Lo, but there are <everal additional complications. It is
first uscful to reformulate Theorein 1.5 in terins of the chromatic number of
IKneser hyperaraph. Let G = @, ., be the k-uniform Kneser hypergraph delined
as follows, The vertices of ¢ are all the r-subsets of o2 T n,. and a collee-
tion of & vertices forms an edge if the corresponding r-sets are pairwise disjoint.
Theorem 1.5 is thus equivalent to the statement that if » Z =1 k=1) + k-r
then 7, . is not f-colorable.

For any k-uniform hypergraph 1 = (V A ). deline a siin-
plicial complex. CiH) as lollows: the vertices of C(#) are all the £ k! ordered
k-tuples vy va. . . .. vgy of vertices of #, where vyt £, A set of vertices
L i), g of CH) forms a simplex if there is a complete k-partite sub-
graph of H on the (pairwise disjoint) sets of vertices L
vy« Vo foralli« fand 1 <5 <k,

..... Vy such that

Theorem 1.5 now follows from the following three assertions.

Proposition 1.1
For any k-uniform hypergraph #. where k is a prime. if
ClH ) is (t=1){k—=1)1=1 connected, then /f is not t-colorable

Proposition 4.2
C(Gg k) is (n—kr—1)-connected. Thus if
w2 ({=1)(k—=1) = kr ivis (£ —1)(k—=1)=I1-connected.

Proposition 4.3
The validity of Theorem 1.1 for
ir' = (t=1){k—=1)+kr.£.k') implies its validity for (r .k k')

Proposition 4.1 appears interesting in its own right and

{r.t.k) and

probably holds for every positive integer k. Its prool nses the gencralization of
Borsuk Theorem due to Barany, Shlosman and Szucs, given in Theorem 1.2, Pro-
position 4.2 ean be proved using several standard results in topology and the
leasy) proof of Proposition 4.3 is purely combinatorial. The detailed proofs
appear in AFL .

Propositions 1.1 and 4.2 imply the assertion of Theorem

1.5 for every prime k. Thus. by Proposition 4.3 the theorem holds lor all r.t, k.
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5. OPEN PROBLEMS

The first obvious problem is the problem of finding pure
combinatorial prools for the problems discussed in this paper. After all. one
would naturally expect that combinatorial statements about combinatorial objects
should have combinatorial preofs. Such proofs are desirable. since they might
shed more light on the problems. At the moment, there is no known combina-
torial proof to any of the combinatorial applications of Borsuk's theorem men-
tioned in this paper.

Another intriguing problem is an algorithmic one. When
we use Borsuk’s theorem to prove the existence of a certain partition. the prool
supplies no prarctical way for effecting sueh a partition. Thus, for example. one
would like to find a polynomial time algerithm for finding, given an opened nack-
lace N with ka, beads of color 1. 1 <1 < t, a set of at most (k—1)t cuts in N
and a partition of the resulting intervals into & collections, each containing pre-
cisely a, beads of color 1, I < <{. It is worth noting that we can show that
the following related problem is MP-complete: Given an opened necklace N with
2a, beads of color 1, I <1 < (, and given a set of cuts of .V, decide il it is possi-
ble to divide the resulting intervals into two collections. each containing precisely
a, beads of color 1, a <1 < t.

Finally we mention another problem which is related to
the results of Section 3. Suppose j#,,jta, . . . .1, are t probability measures on the
unit inteval I. each absolutely continuous with respect to the usual (Lebesque)
measure. For a real number @, 0 < aa <1 a subset A of [ is an a-share (with
respect to the measures jy, . . ., 1) if p{A)=a for all 1 <i <t We note
that Liapounoff Theorem (Li, see also NP, and Da) implies that for each
i, ... .p and @& as above there is an a-share A. I 4 is a union of a finite
number s of non-overlapping intervals we define the size of A Lo be 5. Other-
Wise, the size of A is infinity. For an integer t > 1 and 0 < a <1 let [{f.a) be
the smallest integer / (possibly infinity) such that for every sequence of ¢ con-
tinuous probability measures on [ there is an a-share of size at most f. Clearly
J{t.0)=f(t.1)=1Torall t > 1 and [(l.a)=1lorall 0 < a < 1. The results
of Stone and Tukey ST easily imply that f(2,a) =1 for every & of the form
| /k. k integer, and that f(2,a) =2 for every other a. Combining Theorem 3.5
with an appropriate construction we can show that for every two integers
ok 2

Fleafey= | HEEL)

This implies that f(t.a) is finite for every rational a. It would be interesting to
decide il f(t.a) is finite for all possible ¢ and a and il s0, to determine or esti-

mate this funetion. At the moment. we are unable to show that J(3.a) is finite

even for a single irrational value of &
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